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/ Presentation Outline

* Intelligent Control Background

* Intelligent Flight Control Research @
NASA Ames
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* Intelligent Control Background

—What are intelligent systems

—What 1s intelligent control

—Intelligent control architectures

K. KrishnaKumar NeuroEngineering Lab *




/ Defining Intelligent Systems

|-

» An Intelligent System is one that exhibits any of the
following traits:

v" Learning

v’ Adaptability

v Robustness across problem domains

v Improving efficiency (over time and/or space)

v" Information compression (data to knowledge)
v' Extrapolated reasoning )

—
IS /s seen as Rationalistic AlL: Intelligence

for doing the right thing

K. KrishnaKumar NeuroEngineering Lab *




Y Intelligent Control
lU_desired 7 Y_desired ?
— Control —)Q . System >O
Y

U

Two Error Signhals are needed:

1. System Performance Error Signal
2. Control Error Signal
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// Questions

Ames Research Cenfer

How do we say that one controller is more
intelligent than the other?

Can the intelligence be improved?
Can intelligence be measured?

Answer : Levels of Intelligent Control
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/{/ Levels of Intelligent Control e

Ames Research Center

/ System Features \ N U System or Y _
E Plant

N
'\ Level 0 Yoo

AN
\\ Level 1
\\\ N
\\L evel 2
\

/ \ Level 3 /
=

Lev Self improvement of: Description

0 Tracking Error (TE) Robust Feedback control (Error tends to
Z€ero).

1 TE + Control Parameters | Robust feedback control with adaptive
(CP) control parameters (error tends to zero for
non-nominal operations; feedback control
is self improving).

2 TE + CP + Performance Robust, adaptive feedback control that
Measure (PM) minimizes or maximizes a utility function
over time (error tends to zero and a
measure of performance is optimized).

3 TE+CP+PM+ Planning Level 2 + the ability to plan ahead of time
Function for uncertain situations, simulate, and

model uncertainties.
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//"1/ Levels

{ Ames Research Center

=» |.evel 0: Robust stabilization
Gain Scheduling

Supervised neuro-control
* Fuzzy control — T

11 scaled system input inquictic  aggregation  Linguistic system output
Mimic a controller _ Linguistic _aggregation Ut

/| variable

State Action/Control
membership function —fuzzy rulebase «— membership function

parameters parameters

IF x,is B AND x, is/A

Known Data THEN y s &

Base

Y ' ; £\ non-linear function
L\ non-inear function AN

Neuro-Control
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//"1/ Levels

{ Ames Research Center

= Level 1: Adaptive Control

* Learn Systems and Controller Parameters

e Neural adaptive Control
* Adaptive inverse Control
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7{4{““ Levels g

= Level 2: Optimal Control

* Reinforcement Learning

Control Allocation

Dynamic programming

Linear Adaptive Critics

Non-linear Adaptive Critics e ———
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//"1/ Levels

{ Ames Research Center

= Level 3: Planning Control (More Al-like)

« Strategic Planning

. FAILURE
« Strategic search

e Mission Planning

« HTN: hierarchical task network

i i EVENT
* Production-based cognitive architectures @

. . . Updated Flight Dynamics /
° DeCISlon-theOI'etIC (MMDP) Performance Boundaries ASAC AIRPORT
DATABASE
« Etc..

: .
Airport List -
————————

Sorted Feasible
Airport List

TRAJECTORY
PLANNING |

‘ Trajectory
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NASA Ames
Intelligent Flight Control Applications
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/ Manned Aircraft Objectives

Develop flight control technologies that can automatically
compensate for problems or failures when they occur

Develop these technologies and capabilities in a generic sense so
that they can be applied to different vehicle classes

Application Platforms
— B 757 class aircraft — Simulation only
— F-15 — In Flight test
— C-17 — Flight tests in 2004
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/{/ Pre-Trained Neural Networks e
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Sepl Sep2 Sep3
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Rap d Arcrat Mdd er (RAM) Masg/| nerti aEsti nat es ( Bd ance) Pruning Agorithm
e |
/- |
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|
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\
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Neural Flight Control Architectures

Adaptive Critic technolo

Adaptive
Critic Optimal
Control

Allocatio

Desired
Handling Qualities
Reference Model

Direct Adaptive
“on-line”
Neural Network

Level 1

Controller

gy

Generalized control reallocation

n

Indirect Adaptive

Level 0

derivative estimates

stability & control

& “pre-trained”
Neural Network(s)

K. KrishnaKumar
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/ Level 1 Adaptive Control Equations &

Plant: x=f(x,x, J

Linear approximation: xzAx+Bd

Control law design: d= B~ (v— Ax)

Closed loop: x=f(xx, d=o+ F

Inversion error: f =f—uv=f(x,x,d)—(Ax+ B 9)
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/ Level 1 Control Equations

Provide compensation for the inversion error by design of &
=4 —Yp

g, 1s designed as output of a linear controller, e.g. “PI” control.
G =%, +K,(x, =)+ K (x, —x)3

2, 1s the adaptive control
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/ Level 1 Control Equations

Rewrite

- X
x=(x,—x) and e=[ﬁb]

X

0 1 0
With g = and b=
-K, -K, 1

We have the tracking error dynamics as: é=a e+ b(2,, — }F)
Neural Network Input Map:
O, =W KxV) for sigma-pi NN

o, =W '®(x,J)  for RBF NN

K. KrishnaKumar NeuroEngineering Lab *




/ ~ Level 2: Optimal Control Allocation

 When to allocate?
— Control limit violation
— Rate saturation
— Control failure
 How to allocate?
— Optimal allocation using Linear Programming
* Conventional hierarchy

 Best available hierarchy

K. KrishnaKumar NeuroEngineering Lab - *



7/%/ Example Aerodynamic Control Authority &
Ames Research Center ;

Directional Authority

O aileron_left | aileron_right O rudder_upper O rudder_lower
W elevator_lob O elevator_lib | elevator_rib O elevator_rob
W spoiler_lib | spoiler_Imib O spoiler_Imob @ spoiler_lob
W spoiler_rib W spoiler_rmib W spoiler_rmob W spoiler_rob
Pitch Conrol Authority Roll Control Authority

- Td™

Axe AXMLAULLLIGARUILIIWL INCUIVEEITYIIITTI Y =aN - -_'




/ Linear Programming Formulation

Dynamic System is defined as

X = o)+ [Blu)+ £,

Let us write [B Iu ] as

By Byl w | |Bu Bu|w N By By | 0
By B |u+Ay B B, By B, B My

U, = Unlimited Control Vector from Dynamic Inverse

u, +Au; =  Limited Control Vector from Dynamic Inverse

K. KrishnaKumar NeuroEngineering Lab *



7/// L. P Formulation (cont’d)

What we need 1s help By Auy, _ By Au,
from Unlimited Control B, Au, B, Au,

Let us now define a control reallocation matrix [7»] such that

A O I e o B e

LL

Define a linear relationship [oc ][k] = [ﬁ]
o 2, o A ]=[By By o . B
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/-/ LP Formulation (Cont’d)

Ames Research Cenfer

min (w )
W . .
7\, 1 l

I

Subject to

aL]<[B] ma  0<2, <2

Example: 4 control inputs

[W]: :[Wl w, W, W4]
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Y Conventional & Best Hierarchies
Elevator Left Aileron Right Aileron Rudder
Elevator Primary | Secondary Secondary
Left Aileron Primary Secondary Tertiary
Right Aileron Secondary Primary Tertiary
Rudder Secondary Secondary Primary
Conventional Best
- * 1 1 1 OO— [ % 1 100
100 * 1 10 100 * 1
] = T =
100 1 * 10 100 1 1
100 1 1 * 1001

K. KrishnaKumar
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// Implementation o]
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* Primary Cost based on “surface”

min
(w u)
U

« Auxiliary Cost based on ‘““axis error”

min
(c e)
U
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/ Level 2 Controller

Reference Model Adaptation
using an
Adaptive Critic

| Adaptive |
Critic 7

. Desired 7
==p | Handling Qualities 7}
| Reference Model |

pilot
inputs
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/ . .
/ Adaptive Critic

Adaptive critic designs have been defined as designs that
attempt to approximate dynamic programming.

J(@)=<yJ({t+1)>+minU(t)
u

X(t)

X(t+1) System ControHer |

4—
* Model “(ti@
i aJ(t+1) oX(t+1) = oU )

aX(t+1) ou()

' ou(r)
()
' +
! J(t+1
| X(t+1) | Critic D
! —> > ¥
"""""""""""""""" 1.0 +
T : yJ(t+1)+U(t)
X(t) Critic”’ < >
—> ’,’ >
, J(t) + -
K
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/‘/ Level 2 Control s
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(i+1) ircraft + Valt)

Reference
Model

-——>

W) 3

/
e(ttl), etc e N A+ / l oU(t)/d e(t)

Critic
(t+1)

o J

e(t), etc e <
Critic

© i) ¥ < >_
- J

e
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// Results for Series of Failures
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Glide Slope Deviation

ol — Flight Fath || 5
— RN ;
= a5l — 2.5 glide slope | | of--
= — 2DOTS: 207 .
E oot g sl
2
T 15f 4
A 0.05 F
£ 1 .
= :
ol l 006
ab - .04 | -
30 25 20 15 10 5 1}
Localizer Deviation SEFE
Eoqof ' ' ' ' ] 3t
§ ZEF -
gl 4 2
E 1.5F
A
3z -1of -
[m]
2 o7 ] During tactical descent (failures on one side)
£ o ] : 23,000’: Stab frozen at trim
& -2t -
20 ] : 20,000’: 2 Elevators frozen at 0 deg.
& -6 . : 17,000°: Upper rudder hard over

- T . : 15,000’: Outboard flap fails retracted
14,000’: Aileron frozen at 0 deg.
13,000’: Two outboard spoilers frozen at 0 deg.
When engines come out of reverse: Outboard engine seizes
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A . .
7,{4ﬁ,&,&_ﬁ,ﬂ,m,,ﬁ,lntelhgent Maneuvering of UAVs

Goals

—Provide increasingly higher levels of automation, capable of
responding to changing goals and objectives, while taking corrective
actions in the presence of internal or external events.

—Allow pilots, ground-based operators or QUIOROMOUS

executives to defer the responsibilities of performing and
supervising tasks, to focus on managing goals and objectives.
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/f/ Intelligent Maneuvering of UAVs ]
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Level 3 Level 2 Level 1

Strategic Tactical Autopilo Flight %e >
Planning Maneuveri Controlle
Sensors
(IRS)
Sensors
(ADC)
Sensors
(NAV)
ADC- Air Data Computer __ Continuous-Time
IRS - Inertial Reference System Commands & Sign

NAV- Navigational System

---. Discrete-Ti
(GPS & Visual Perception) iscrete-Time

Commands
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/ Flight Controller

Rotational Virtual
Acceleration - "Open-Loop”
Commands Stick & Pedal

RCAH Reference| & Pl Error | + Dynamic ,
[Stir:k&Pedal]_’ Models ; Controllers| . g Inversion _.[ Alrcraft ]
R-:::taz‘mnaj f Tf

Rate

Commands C}n-Liﬁe Bre-Trained
Learning re-lraned g
Metworks
Metworks

/t
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L Tactical Maneuvering

Performs time-critical flight path operations, which includes aggressive

maneuvers in the presence of unexpected obstacles.
Inputs
—Commands Immunized Maneuver Selection
. . -line
Reference Targets / Trajectory I_‘Mm_ry|
*Performance Parameters oo ‘Bsﬁ‘ |
—Awareness oo >l | of B | sE.ecﬁ:n\ Maneuver
*Threat Detection (eg. TCAS, GCAS) on-ine iy
*Vehicle Performance Models oy
°Outputs Krishna Kumar
—Maneuver Sequence . ,
) Model Predictive Take-off and Landing
*Control Law Specific Modes & Targets Foskion e V2 space
*Transition Criteria

*Maneuver Selection Specialists

_ e E':{

—Immunized Maneuver Selection

Ca e 4 2 _
—Heuristic-Based TSP Maneuver Selection %n *ﬁh . =
*Maneuver Database ;nw e . .
—Elements & “Canned” Sequences Y e a-susden 1

K. KrishnaKumar
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/ A system-level description of the Immune System
Metaphor

Ames Research Cenfer

Antigen/Threat/Problem

(@ ) Immune
Information Network
available in Bone Marrow Negative
the DNA :> (Model) :> Selection :> Clonal
Selection
lecule. A A
a Mo Teclf € )
ea priori knowledge, eShape Space eSelf-Nonself eDefinition of Antigen
eSimulation, System | eRepresentation issues recognition e Antigen-Antibody strength
Models, etc. (Binary, etc) eDiscrimination (fitness) definition
epartly in T-cells.
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Ames Research Center

Tactical Maneuvering Database

Contains general and aircraft specific maneuvering database elements, each
corresponding to associated control laws. Pre-canned maneuver sequences represent

domain expertise.
*Elements

—Control Law
*Mode & Target Definition
—Aircraft Specific
*Flight Envelope Validation Logic
—Specifications
*Closed-Loop Predictive Models (x;, ..., x;)
*Resource Allocation Table (e.g. lat, lon, ped, thr/col)

*Sequences
—Elements
*Specified Parameters / Arguments
—Transition Criteria / Termination Logic
*Time-Based and/or Condition-Based
—Interrupts
*Abort Conditions & Abort Sequence

K. KrishnaKumar

Bank to Turn Element

Heading Select (coord. turn)

Mode: HDGSEL
Target: Heading = [arg1] deg
Envelope: IAS > 180 kts, [0 < ...
Model: ¢ /@, = T /(t s+1),

0’ max = 9€0s(0)sin(d,,,..)/V;

RAT: LAT/PED

Bank & Pull to Turn Sequence

| Bank Left: 0
| Normal Accel. (speed control)

Bank Right: +90

Mode: BANKSEL

Target: Bank = 90 deg, Vz = Vz,
Envelope: mach > 0.4, |a/< ...
Model: ¢ /¢, = T /(T s+1),

¢‘max = pmax

Vz=Vz,

RAT: LAT/PED
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»

Autopilot System (Example)

Ames Research Cenfer

Vertical Speed FPA From

From Altitude % Airspeed %

Vertical Speed | po—p FPA From . p»o—p| Pitch Rate 1’

From V-Path | Vertical Speed From FPA Longitudinal
? i ? Stick
Fixed ! Fixed Pitch Rate From S
Vertical Speed ' FPA Body-Axis Pitch
i
|
|

____________________________ p| Thrust From

Vertical Speed %

Thrust From - »O—p Throttle

Airspeed
Fixed j
Thrust
*Longitudinal Modes
—Pitch, Nz, AoA, FPA; Mach, IAS, Vertical Speed; Vertical Path, Altitude
*Thrust Modes
—Mach, IAS, Vspd, Thrust; Vertical Path, Altitude, FPA
Lateral Modes

—Bank, Roll Rate; Heading, Track; Lateral Path

*Directional Modes

—Sideslip, Ny, Heading
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A Results e
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»

Strategic Maneuvering

Ames Research Cenfer

Performs long-term planning that meets dynamic mission goals and objectives,
within mission constraints and performance limitations.

Inputs
_Goals wsLow-Altitude Energy Management
*Cost Function o pflj
*Mission Constraints . Jf’\/ga\hi
—Awareness ‘ ( i )
*External Obstacles (weather, terrain, ...) e \\o _H/J__,i %
eInternal Health & Performance Limitations 4
*Outputs A st N
~Extended Flight Plan John Bul

°Wayp0ints / Reference Traj ectory Obstacle Avoiding Evolutionary Navigation

*Performance Parameters
*Configuration Schedules
*Trajectory Specialists
—Energy Management Guidance
*Tear Drop, Low-Altitude, Enroute
—Evolutionary Navigation
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/’Optimal Way Point Computation Around Obstacles
s o Using Evolutionary Algorithms

»The Algorithm:
»Step 1: Determine the obstacles that are in the path of the
flight
» Step 2: Place the waypoints for the aircraft on the
circumference of the obstacles
» Step 3: Compute the path between the start and the end using
the waypoints.
» Step 4: Compute a fitness function
»Step 5. After “n” iterations the best set of waypoints defines
the navigation path.
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// Demo ]
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/ Intelligent Control for BEES

Exploration of Mars using Free-flyers with sen
Nature

Controller Objectives: i I .
»Maintain safe distance from the Lander and ensure loeat ™.
stability. DRl T
»Point in the desired attitude and follow a trajectory to enable
imaging of interesting Geological Picture.

» Optimize long-term and short-term goals, such as
minimization of fuel (long-term) and avoid collision with the
Lander (short-term)

»React to changing environments by adapting the control
functionality
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Pre-Trained Neural Networks

K. KrishnaKumar

™. TAZL
£3.53
5

|

ssnosoon sposn as
83333828 3BEER 38

“mes Research Center ;
Sepl Sep2 Sep3
Inegaed Vehide Modding Env. Cartes an Bu er Gode (CART3D Levenberg Marquard neurd ne Quti nd
CAD Designs Pruning Agorithm
e ol
A. Elevon = 5.0
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S
e
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/'/ Level 2 Architecture
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Strategic Accn Tactical
Planner Command Maneuvering
A
/7
- _ ™\
@_, P + 1 Error Dynamic
- Controller Inversion
/ i
ARS Neural Network
Features eural Networ
7 % %
. J
Control
Allocation

=1 Sensor
Suite
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// Concluding Remarks
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v'Intelligent control comes in many flavors

v'Levels of Intelligent Control is one way of quantifying
the roles of Intelligent control

v'Intelligent control architectures allow for fast
prototyping

v'Intelligent control architectures can guarantee inner-loop
stability

v'For UAV application, intelligent control provides a
robust way to accommodate any outer-loop architecture for
planning, etc.
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